Code Runner Vscode Python3

The Python extension supports testing with Python's built-in unittest framework as well as pytest.

  1. Code Runner Vscode Python 3 Tutorial
  2. Code Runner Visual Studio Code
  3. Code Runner Visual Studio

A little background on unit testing

Hi I recently got a new macbook air for school and have downloaded vsc and python 3.9.7, with code runner, Pylance and Python. My task is to create a program that takes a bunch of grades and calculates the percentages and inputs them into a table, but i'm having trouble with the input function on mac. To run a python file you can right click in the editor and select Run Python File in Terminal. Bonus: If you want to run your python code with the code runner extension, in your workspace. Code-runner.showStopIconInEditorTitleMenu: Whether to show 'Stop Code Run' icon in editor title menu when code is running. (Default is true ) code-runner.terminalRoot: For Windows system, replaces the Windows style drive letter in the command with a Unix style root when using a custom shell as the terminal, like Bash or Cgywin. 正是因为这个来自于自身的需求,笔者开发了📦Code Runner插件。时至今日,Code Runner已经有了超过400万的下载量,支持了 Node.js, Python, C, Java, PHP, Perl, Ruby, Go等超过40种的语言。下面,我们就来看看如何来玩转Code Runner,提高你的效率。 代码一键运行.

(If you're already familiar with unit testing, you can skip to the walkthroughs.)

A unit is a specific piece of code to be tested, such as a function or a class. Unit tests are then other pieces of code that specifically exercise the code unit with a full range of different inputs, including boundary and edge cases.

For example, say you have a function to validate the format of an account number that a user enters in a web form:

Unit tests are concerned only with the unit's interface—its arguments and return values—not with its implementation (which is why no code is shown here in the function body; often you'd be using other well-tested libraries to help implement the function). In this example, the function accepts any string and returns true if that string contains a properly formatted account number, false otherwise.

Code Runner; Pylance; Step 3: Set up VS Code for Python. To set up VS Code for the Python programming language, make sure you know where you have installed the Python interpreter in your system. If you don’t know where it is installed, find Python.exe in your system and copy its path. Then create a Python file in your VS code and write some.

To thoroughly test this function, you want to throw at it every conceivable input: valid strings, mistyped strings (off by one or two characters, or containing invalid characters), strings that are too short or too long, blank strings, null arguments, strings containing control characters (non-text codes), string containing HTML, strings containing injection attacks (such as SQL commands or JavaScript code), and so on. It's especially important to test security cases like injection attacks if the validated string is later used in database queries or displayed in the app's UI.

For each input, you then define the function's expected return value (or values). In this example, again, the function should return true for only properly formatted strings. (Whether the number itself is a real account is a different matter that would be handled elsewhere through a database query.)

With all the arguments and expected return values in hand, you now write the tests themselves, which are pieces of code that call the function with a particular input, then compare the actual return value with the expected return value (this comparison is called an assertion):

The exact structure of the code depends on the test framework you're using, and specific examples are provided later in this article. In any case, as you can see, each test is very simple: invoke the function with an argument and assert the expected return value.

The combined results of all the tests is your test report, which tells you whether the function (the unit), is behaving as expected across all test cases. That is, when a unit passes all of its tests, you can be confident that it's functioning properly. (The practice of test-driven development is where you actually write the tests first, then write the code to pass more and more tests until all of them pass.)

Because unit tests are small, isolated piece of code (in unit testing you avoid external dependencies and use mock data or otherwise simulated inputs), they're quick and inexpensive to run. This characteristic means that you can run unit tests early and often. Developers typically run unit tests even before committing code to a repository; gated check-in systems can also run unit tests before merging a commit. Many continuous integration systems also run unit tests after every build. Running the unit test early and often means that you quickly catch regressions, which are unexpected changes in the behavior of code that previously passed all its unit tests. Because the test failure can easily be traced to a particular code change, it's easy to find and remedy the cause of the failure, which is undoubtedly better than discovering a problem much later in the process!

Code

For a general background on unit testing, read Unit testing on Wikipedia. For useful unit test examples, you can review https://github.com/gwtw/py-sorting, a repository with tests for different sorting algorithms.

Example test walkthroughs

Python tests are Python classes that reside in separate files from the code being tested. Each test framework specifies the structure and naming of tests and test files. Once you write tests and enable a test framework, VS Code locates those tests and provides you with various commands to run and debug them.

For this section, create a folder and open it in VS Code. Then create a file named inc_dec.py with the following code to be tested:

With this code, you can experience working with tests in VS Code as described in the sections that follow.

Configure tests

Once you install the Python extension, a test beaker icon will be available on the VS Code Activity bar - that's the Test Explorer. When opening the Test Explorer, you will see a Configure Tests button if you don't have a test framework enabled. Once you select Configure Tests, you will be prompted to select a test framework and a folder containing the tests. If you're using unittest, you will also be asked to select the file glob pattern used to identify your test files.

You can configure your tests anytime by using the Python: Configure Tests command from the Command Palette. You can also configure testing manually by setting either python.testing.unittestEnabled or python.testing.pytestEnabled to true. Each framework also has specific configuration settings as described under Test configuration settings for their folders and patterns.

If both frameworks are enabled, then the Python extension will only run pytest.

When you enable a test framework, VS Code prompts you to install the framework package if it's not already present in the currently activated environment:

Create tests

Each test framework has its own conventions for naming test files and structuring the tests within, as described in the following sections. Each case includes two test methods, one of which is intentionally set to fail for the purposes of demonstration.

Tests in unittest

Create a file named test_unittest.py that contains a test class with two test methods:

Tests in pytest

Create a file named test_pytest.py that contains two test methods:

Test discovery

Code Runner Vscode Python 3 Tutorial

By default, the Python extension attempts to discover tests once you enable a framework. You can trigger test discovery at any time using the Test: Refresh Tests command.

python.testing.autoTestDiscoverOnSaveEnabled is set to true by default, meaning that test discovery is also performed automatically whenever you add, delete, or update any Python file in the workspace. To disable this feature, set the value to false. You will need to reload the window for this setting to take effect.

Test discovery applies the discovery patterns for the current framework (which can be customized using the Test configuration settings). The default behavior is as follows:

  • python.testing.unittestArgs: Looks for any Python (.py) file with 'test' in the name in the top-level project folder. All test files must be importable modules or packages. You can customize the file matching pattern with the -p configuration setting, and customize the folder with the -t setting.

  • python.testing.pytestArgs: Looks for any Python (.py) file whose name begins with 'test_' or ends with '_test', located anywhere within the current folder and all subfolders.

Tip: Sometimes tests placed in subfolders aren't discovered because such test files cannot be imported. To make them importable, create an empty file named __init__.py in that folder.

If discovery succeeds, you will see tests listed in the Test Explorer:

If discovery fails (for example, the test framework isn't installed or you have a syntax error in your test file), you will see an error message displayed in the Test Explorer. You can check the Python output panel to see the entire error message (use the View > Output menu command to show the Output panel, then select Python from the dropdown on the right side).

Once VS Code recognizes tests, it provides several ways to run those tests as described in Run tests.

Run tests

You can run tests using any of the following actions:

  • With a test file open, click on the green run icon that is displayed in the gutter next to the test definition line, as shown in the previous section. This command runs only that one method.

  • From the Command Palette, by running any of the following commands:

    • Test: Run All Tests - Runs all tests that have been discovered.
    • Test: Run Tests in Current File - Runs all tests in a file that that is open in the editor.
    • Test: Run Test at Cursor - Runs only the test method under your cursor in the editor.
  • From the Test Explorer:

    • To run all discovered tests, select the play button at the top of Test Explorer:

    • To run a specific group of tests, or a single test, select the file, class, or test, then select the play button to the right of that item:

    • You can also run a selection of tests through the Test Explorer. To do that, Ctrl+Click (or Cmd+Click on macOS) on the tests you wish to run, right-click on one of them and then select Run Test.

After a test run, VS Code displays results directly in the editor as gutter decorations. Failed tests will also be highlighted in the editor, with a Peek View that displays the test run error message along with a history of all of the tests' runs. You can press Escape to dismiss the view, and you can disable it by opening the User settings (Preferences: Open Settings (UI) command in the Command Palette) and changing the value of the Testing: Automatically Open Peek View setting to never.

In the Test Explorer, results are shown for individual tests as well as any classes and files containing those tests.

VS Code also shows test results in the Python Test Log output panel.

Run tests in parallel

Support for running tests in parallel with pytest is available through the pytest-xdist package. To enable parallel testing:

  1. Open the integrated terminal and install the pytest-xdist package. For more details, refer to the project's documentation page.

    For Windows

    For macOS/Linux

  2. Next, create a file named pytest.ini in your project directory and add the content below, specifying the number of CPUs to be used. For example, to set it up for 4 CPUs:

  3. Run your tests, which will now be run in parallel.

Debug tests

You might occasionally need to step through and analyze tests in the debugger, either because the tests themselves have a code defect you need to track down or in order to better understand why an area of code being tested is failing.

For example, the test_decrement functions given earlier are failing because the assertion itself is faulty. The following steps demonstrate how to analyze the test:

  1. Set a breakpoint on first the line in the test_decrement function.

  2. Right-click on the gutter decoration next to the function definition and select Debug Test, or select the Debug Test icon next to that test in the Test Explorer. VS Code starts the debugger and pauses at the breakpoint.

  3. In the Debug Console panel, enter inc_dec.decrement(3) to see that the actual result is 2, whereas the expected result specified in the test is the incorrect value of 4.

  4. Stop the debugger and correct the faulty code:

  5. Save the file and run the tests again to confirm that they pass, and see that the gutter decorations also indicate passing status.

    Note: Running or debugging a test does not automatically save the test file. Always be sure to save changes to a test before running it, otherwise you'll likely be confused by the results because they still reflect the previous version of the file!

You can use the following commands from the Command Palette to debug tests:

  • Test: Debug All Tests - launches the debugger for all tests in your workspace.
  • Test: Debug Tests in Current File - launches the debugger for the tests you have defined in the file you have open in the editor.
  • Test: Debug Test at Cursor - launches the debugger only for the method where you have your cursor focused on the editor. You can also use the Debug Test icons in Test Explorer to launch the debugger for all tests in a selected scope as well as all discovered tests.

You can also change the default behavior of clicking on the gutter decoration to debug tests instead of run, by changing the testing.defaultGutterClickAction setting value to debug in your settings.json file.

Runner

The debugger works the same for tests as for other Python code, including breakpoints, variable inspection, and so on. To customize settings for debugging tests, you can specify 'purpose': ['debug-test'] in the launch.json file in the .vscode folder from your workspace. This configuration will be used when you run Test: Debug All Tests, Test: Debug Tests in Current File and Test: Debug Test at Cursor commands.

For example, the configuration below in the launch.json file disables the justMyCode setting for debugging tests:

If you have more than one configuration entry with 'purpose': ['debug-test'], the first definition will be used since we currently don't support multiple definitions for this request type.

For more information on debugging, see Python debugging configurations and the general VS Code Debugging article.

Test commands

Below are all the supported commands for testing with the Python extension in VS Code:

Command NameDescription
Python: Configure TestsConfigure the test framework to be used with the Python extension.
Test: Clear All ResultsClear all tests statuses, as the UI persists test results across sessions.
Test: Debug Failed TestsDebug tests that failed in the most recent test run.
Test: Debug Last RunDebug tests that were executed in the most recent test run.
Test: Debug Test at CursorDebug the test method where you have your cursor focused on the editor. Similar to Python: Debug Test Method... on versions prior to 2021.9.
Test: Debug Tests in Current FileDebug tests in the file that is currently in focus on the editor.
Test: Go to Next Test FailureIf the error peek view is open, open and move to the peek view of the next test in the explorer that has failed.
Test: Go to Previous Test FailureIf the error peek view is open, open and move to the peek view of the previous test in the explorer that has failed.
Test: Peek OutputOpens the error peek view for a test method that has failed.
Test: Refresh TestsPerform test discovery and updates the Test Explorer to reflect any test changes, addition, or deletion. Similar to Python: Discover Tests on versions prior to 2021.9.
Test: Rerun Failed TestsRun tests that failed in the most recent test run. Similar to Python: Run Failed Tests on versions prior to 2021.9.
Test: Rerun Last RunDebug tests that were executed in the most recent test run.
Test: Run All TestsRun all discovered tests. Equivalent to Python: Run All Tests on versions prior to 2021.9.
Test: Run Test at CursorRun the test method where you have your cursor focused on the editor. Similar to Python: Run Test Method... on versions prior to 2021.9.
Test: Run Test in Current FileRun tests in the file that is currently in focus on the editor. Equivalent to Python: Run Current Test File on versions prior to 2021.9.
Test: Show OutputOpen the output with details of all the test runs. Similar to Python: Show Test Output on versions prior to 2021.9.
Testing: Focus on Test Explorer ViewOpen the Test Explorer view. Similar to Testing: Focus on Python View on versions prior to 2021.9.
Test: Stop Refreshing TestsCancel test discovery.

Test configuration settings

The behavior of testing with Python is driven by general UI settings provided by VS Code, and settings that are specific to Python and to whichever framework you've enabled.

General UI settings

The settings that affect the UI of the testing features are provided by VS Code itself, and can be found in the VS Code Settings editor when you search for 'Testing'.

General Python settings

Setting
(python.testing.)
DefaultDescription
autoTestDiscoverOnSaveEnabledtrueSpecifies whether to enable or disable auto run test discovery when saving a test file. You may need to reload the window after making changes to this setting for it to be applied.
cwdnullSpecifies an optional working directory for tests.
debugPort3000Port number used for debugging of unittest tests.
promptToConfiguretrueSpecifies whether VS Code prompts to configure a test framework if potential tests are discovered.

unittest configuration settings

Setting
(python.testing.)
DefaultDescription
unittestEnabledfalseSpecifies whether unittest is enabled as the test framework. The equivalent setting for pytest should be disabled.
unittestArgs['-v', '-s', '.', '-p', '*test*.py']Arguments to pass to unittest, where each element that's separated by a space is a separate item in the list. See below for a description of the defaults.

The default arguments for unittest are as follows:

  • -v sets default verbosity. Remove this argument for simpler output.
  • -s . specifies the starting directory for discovering tests. If you have tests in a 'test' folder, change the argument to -s test (meaning '-s', 'test' in the arguments array).
  • -p *test*.py is the discovery pattern used to look for tests. In this case, it's any .py file that includes the word 'test'. If you name test files differently, such as appending '_test' to every filename, then use a pattern like *_test.py in the appropriate argument of the array.

To stop a test run on the first failure, add the fail fast option '-f' to the arguments array.

See unittest command-line interface for the full set of available options.

pytest configuration settings

Setting
(python.testing.)
DefaultDescription
pytestEnabledfalseSpecifies whether pytest is enabled as the test framework. The equivalent setting for unittest should be disabled.
pytestPath'pytest'Path to pytest. Use a full path if pytest is located outside the current environment.
pytestArgs[]Arguments to pass to pytest, where each element that's separated by a space is a separate item in the list. See pytest command-line options.

You can also configure pytest using a pytest.ini file as described on pytest Configuration.

Note If you have the pytest-cov coverage module installed, VS Code doesn't stop at breakpoints while debugging because pytest-cov is using the same technique to access the source code being run. To prevent this behavior, include --no-cov in pytestArgs when debugging tests, for example by adding 'env': {'PYTEST_ADDOPTS': '--no-cov'} to your debug configuration. (See Debug Tests above about how to set up that launch configuration.) (For more information, see Debuggers and PyCharm in the pytest-cov documentation.)

Python3

See also

  • Python environments - Control which Python interpreter is used for editing and debugging.
  • Settings reference - Explore the full range of Python-related settings in VS Code.

Linters perform static analysis of source codes and check for symantic discrepancies. When you lint your code, it’s passed through a basic quality checking tool that provides instructions on how eliminate basic syntactic inconsistencies.

Formatters are similar tools that tries to restructure your code spacing, line length, argument positioning etc to ensure that your code looks consistent across different files or projects.

Python offers you a plethora of linters and formatters to choose from. Flake8, pyflakes, pycodestyle, pylint are some of the more widely used linters and black, yapf are two newer members in the code formatting space.However, not to bombard you with a deluge of information, we are taking an opinionated route that gets the job done without a hitch. Let’s talk about Flake8 and Black.

Flake8¶

Flake8 is a Python linting library that basically wraps three other linters, PyFlakes, pycodestyle and Ned Batchelder’s McCabe Script. It’s one of the better linters out there that has very low false positive rate.It checks your code base against PEP8 programming style, programming errors (like “library imported but unused” and “Undefined name”) and cyclomatic complexity.

For more details on the nitty gritties of flake8, check out their github project here.

Black¶

Black is known as the uncompromised Python code formatter. Unlike flake8 or pycodestyle, it doesn’t nag you when there are style inconsistencies. It just fixes them for you. Black does not have a lot of options to tinker with and has a lot of opinion on how your code should look and feel. You might not always agree with the decisions that black takes for you but if you can get along with the style that black imposes on you, it can take care of the unnecessary hassles of formatting your codes to keep it conistent across multiple projects or organization.

Before formatting with black

After formatting with black

Setting Up Linters in VS Code¶

Luckily VS Code comes with both flake8 and black formatter lurking in the settings. To set them up:

  • Press ctrl+, to fire up the settings panel

  • Search for flake8 in the search panel

  • Enable the option Python>Linting:Flake8Enabled

  • Search for black and select black from the dropdown called Python>Formatting:Provider

Code Runner Visual Studio Code

Doing the above will set flake8 and black to lint and format your script on a project basis. You have to install flake8 and black in your environment via pipinstallflake8 and pipinstallblack respectively. If you want to set them up globally and don’t want to worry about formatting ever again, you have set up their global paths. To do so:

Code Runner Visual Studio

  • Deactivate your environment

  • Install flake8 and black globally via pip3installflake8 and pip3installblack

  • On the terminal write whereisflake8 and whereisblack

  • You should see their global paths

  • Now go to the settings and search for flake8 and paste your flake8 path in PythonLinting:Flake8Path option

  • Copy black path and paste them in PythonFormatting:BlackPath option